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ON THE STABILITY OF ONE-DIMENSIONAL STATIONARY SOLUTIONS OF HYPERBOLIC 
SYSTEMS OF DIFFERENTIAL EQUATIONS CONTAINING POINTS AT WHICH ONE 

CHARACTERISTIC VELOCITY BECOMES ZERO* 

A.G. KULIKOVSKII and F.A. SLOBODKINA 

The stability of the stationary solutions of hyperbolic systems of partial 
differential equations containing a point at which one of the characteristic 
velocities becomes zero, is investigated. The functions sought are assumed 
to be time and coordinate dependent, and their number is arbitrary. 

The study of stability carried out below is based on the results 
obtained in /l, 2/, according to which the behaviour of the unsteady 
perturbations near the critical point is described by a single non-linear 
partial differential equation irrespective of the number of equations in 
the initial system. The equation is written in terms of a function 
analogous to the Riemann invariant connected with the vanishing character- 
istic velocity. 

The equation is used below to examine all possible cases of continuous 
solutions of an arbitrary hyperbolic system of equations with continuous 
and discontinuous right-hand sides, and conditions are formulated under 
which the growth of perturbations near the critical point at which one of 
the characteristic velocities becomes zero, leads to the instability of 
the whole solution in toto. The investigation is carried out taking into 
account the onset and development of the perturbations connected with 
other characteristic velocities which have a constant sign within the 
region considered. 

1. Let us consider a hyperbolic system containing an arbitrary number of equations the 
unknown functions of which depend on the spatial coordinate x and the time t 

lji CUkr z, [ 
au. 
2 + c* (I+, 2) f$] = f’ (Uk, 5) (1.1) 

System (1.1) is written in the characteristic form, c'(+,z) are the characteristic 
velocities of the system, and repeated lower Latinindices denote summation from 1 to n. 

The elements of the matrix 1,' and the function c' are assumed to be continuous and dif- 
ferentiable functions of their arguments, and the right-hand sides of (1.1) are assumed to 
be piecewise continuous and may have first-order discontinuities in some planes I = const. Me 
shall assume that the first-order partial derivatives of fi(uk, 2) with respect to all arguments 
exist and are continuous wherever f(nk,z) are defined, except at the points belonging to the 
surfaces of discontinuity of these functions. 
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We shall study the solution of (1.1) on a finite segment of the x axis. The boundary 
conditions are specified at the ends x = -L, and 5 = L, of this segment. 

We shall assume that one of the single characteristic velocities of system (l.l), e.g. 
c'(+,x), vanishes in the domain of variation of the variables ukand x, and the remaining 
velocities (c', 1, . . . . cn)do not change their signs. 

Let us choose a steady solution Uj = Uj(Z) of system (1.1) which has a common point with 
the surface C'(U,,x)=o and is continuous in its small neighbourhood. We shall call this 
point critical and use it as the reference point for the coordinate x and the quantities Uj. 
By virtue of this choice we have z = 0, U, = 0 and cl (O,O, . . . . 0) = 0 at the critical points. 

The necessary condition for a continuous single-valued solution Uj(x) to exist is, that 
the function f1 on the rightyhand side of (1.1) must change its sign at the critical point 
either continuously, or discontinuously /l, 2/. In the first case the critical points repres- 
ent the singularities of,the steady equations of (l.l), and in the second case the derivatives 
dUJdx become infinite at z = 0. 

As was shown in /l, 2/ for the continuous and discontinuous function f’ , the behaviour of 
the steady, as well as the non-steady solution, in a fairly small neighbourhood --6<x<6 
of the cirtical point, can be described approximately by a single first-order differential 
equation 

(1.2) 

Here a, fi, y are constants determined by the form of the initial system (1.1) and c(r,t) 
is the unknown function assumed small in the region considered. The equation shows that the 
perturbations of c (x, t) propagate with characteristic velocity c $- cp. 

The quantities cp and F can be expressed linearly in terms of the "transient" perturbations 

%a and are connected with other characteristic quantities of (1.1) whose velocities do not 
vanish within the region considered. 

TO solve (1.2) we must know the functions F(t)and m(t), and the boundary conditions defin- 
ing c at the ends [--6,61 of the segment, in the cases when the characteristics of (1.2) lie 
within the segment. 

The following expression was obtained in /2/ for vQ: 

Up’ d,, i c* @.v t) de + PW @h p=2,3,...,n 
0 

(1.3) 

Here d, is a constant depending on the initial system (l-l), pp is an arbitrary function 
of time, and c* (x,t) = c(x,t) -C(x) are the perturbations of the steady solution C(s)of(l.2). 
For small 6 the first term on the right-hand side of (1.3) is small, therefore V, can be 
regarded as functions of time only. The expression also determines the quantities cp and F 

which are given in terms of pr by the linear expressions with constant coefficients a, and b, 

From (1.3) it follows that the presence of a perturbation c* (x,t) on the segment [-6,6l 
can give rise to the perturbations v,,, which it turn affect the solution of (1.2) through the 
functions cp(t)and F(t). Moreover, the perturbations v~, propagating over the whole region 
where the solution of (1.1) is studied, will be reflected from the boundary of this region and 
from the inhomogeneities of the solution whose stability is being studied. The reflections 
generate, in general, the perturbations c*. On arriving at the boundaries of the segment 
L--6,6] these perturbations fix the boundary conditions for (1.2). 

The present paper studies the interaction between the perturbation c* and transient 
perturbations v,,, and its effect on the behavipur of the unsteady solution in the neighbour- 
hood of the critical point, and on the stability of the steady solutions. 

Equations (1.3) show that the transient perturbations up change over the segment [--6,61 
by a quantity proportional to 

-b 

As was shown in /l, 2/ using (1.2), the quantity S(t) is given by the equation 

q-q1 -P Qa (1.5) 

c+(b) 

q1= - 5 [C(h)+E]G=- [Cc* ++**]x_b 

qz= [ck+ -$A]__, 
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The quantities q1 and q2 represent the inflow (gain) (or outflOw(lOSS) when they are 

negative) in the area across the boundaries of the segment I--6,61. They are determined for 

the given C(&6) by the values of c* (6) and c* (-6). 

2. As we said before, to study the behaviour of the perturbations we must know the 

quantities cp,F and Qi. The quantity Qi has to be specified only when the characteristics of 
(1.2) arrive from the outside at the corresponding boundary of the segment I--6,61. Let us 

obtain estimates for cp,F and qi under some natural general assumptions. 
Let the transient perturbations VP be generated only when the perturbations c* (x,t) are 

present on the segment [--6,61, and system (1.1) is stable outside the segment 1-6, 61. Then 

we find that v,,, and hence I+,, are of the order of S, i.e., they do not exceed 6max Ic* I. 
The functions F(t)and cp(t)representing the linear combinations of p,,(t) are also of the order 
of s, and since 6 is small, will be much smaller than the characteristic parameter c*. Thus 

under the assumptions made we can neglect in (1.2) the functions cp(t)and F(t) as compared with 
the remaining terms, i.e. assume that 

F (t) = 0, cp (t) = 0 (2.1) 

If there are no perturbations at the initial instant, apart from c*, on the segment 

I-4 61, then the area gain g will be determined by reflection of the perturbations v,,of order 
s from the boundaries of the segment z = -Lx and 2 = L, and from the inhomogeneities of 

the fundamental solution. 
If the reflection coefficients are of the order of unity and the reflection occurs at a 

finite distance where the rate of propagation of the perturbations connected with the character- 
istics of the first family is of the order of unity, then the area flux of the reflected 
perturbation will be of the same order as its amplitude. 

This means that qt can be regarded as a linear functional of S(t)such that the order of 
qi (t) does not exceed that of maxOc,ct S (r)exp a(t -T), remembering that the perturbations 
arriving at the boundaries of the segment l--6,6] vary their areas near it as exp&. We find 

here that q- as, and the sign of the right-hand side of (1.5) can be arbitrary, i.e. no 
general conclusions can be made concerning the behaviour of S. 

Fig.1 Fig.2 Fig.3 

Nevertheless it will be shown that all conclusions concerning the instability, made in 

/l/, without taking g into account, remain valid when the term and the assumptions made here 
are both taken into account. 

Note that the assumptions made are not unique. In some cases the area gain g may be 
much smaller than US, e.g. when the reflection coefficients of the perturbations v,, of the 
values of cc=) at the points of reflection are small. In these cases the area gains need not 
be taken into account when investigating the stability, as was done in /l/. 

3. As we have already noted, whenever the perturbation c*leaves the segment I-6, 61, 
the boundary conditions at its ends need not be specified for c*and the investigation of the 
behaviour of the perturbations near the critical points is the same as that carried out in /l/ 

In particular, the conclusion concerning the instability of the solution corresponding 
to any integral curve passing through a node-type singularity with positive characteristic 
directions in the x, c-plane (see Fig.l), is valid. The case arises when y = O,a>O, f~> 0. 
The characteristic curves of the first family diverge from the critical point. The arrows in 
Fig.1 (as well as in Fig.2 and 3) show the directions in which the quantities c and x vary 
as t increases. 

The perturbation of the stationary solution different from zero at z = 0, at the initial 
instant t = 0 (see Fig.11 remains always in the neighbourhood of the critical point and the 
derivative in x of the solution will tend, as t+oo, to the largest eigenvalue of the singul- 
arity i.e. to A,. The discontinuities, provided that they appear in the solution, will move 
away from the singularity either to the left, or to the right. 
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Let US consider the stationary solutions of (1.1) in the presence of a saddle-type 

singularity. In this case we have in (1.2) Y=O, B>O, and the quantity c can have any sign. 
When cz>O, the solution corresponding to the saddle separatrix, with characteristic 

curves converging to the critical point, remains unstable, within the assumptions made in 
Sect.2, even when g is taken into account. Indeed, let us select the perturbation C* of the 
solution lof at t =O in such a manner, that the total area S(0) = 0, and the areas appearing 
on different sides of the cirtical point are different from zero (see Fig.2). Each area to 
the left and right of s= 0 will grow with time as expat, and the total area, and g together 

with it, will remain equal to zero. The presence of such increasing perturbations means that 

the stationary solution in question is unstable. 

It is interesting to note that a solution, analogous to one obtained above under a series 
of assumptions for a non-linear system, also exists for a linear hyperbolic system of general 

type equations, provided that one family of characteristic curves converges to the critical 

point. 

Let US now inspect the behaviour of the perturbations of the stationary solutions when 

Y # 0. The necessary condition for the stationary solution of (1.2), continuous and single- 
valued in x, to exist in the neighbourhood of the point 5 = 0, c = 0 is, that the quantity 

Y takes different values to the left and right of the critical point, and y_(O when J'( 0, 
y+>O when x>O /2/. The stationary solutions in the x, c-planehave the corresponding 
integral curves near the saddle compressed along the x-axis (Fig.3). The separatrices of this 

saddle are described near the origin of coordinates, to a first approximation, by the formulas 

C(x)=*JC+ It must be assumed, in general, that a_# a+: and since the coefficients p 

and a are discontinuous, (1.2) must be considered separately to the left and right of the 

critical point, and this is indicated by the minus and plus sign respectively. When y # 0, 

the term br in (1.2) can be neglected compared with y and ac. 
The perturbations c*of the solution aob, along which the characteristic curves diverge, 

leave the 6 -neighbourhood of the critical point after a time of order i/s. 

The solution lof with converging characteristics is unstable if a_ _ a+>(). Here, 3ust 

as in the dase of a saddle with a positive value of a , we can construct an increasing solu- 

tion which does not generate the incoming perturbations. If the values of z are different 

on the left and right of the critical point, we cannot draw any general conclusions regarding 

the stability which would only be based on the development of the perturbations near the 

critical point. 1Jor can we draw any conclusions about the stability of the stationary solu- 

tions lob and aof for any a* , since there are no symmetrical solutions near the critical 

points whose total area is equal to zero. 

We can, however, mention other cases in which the growth in the area of perturbations 5 

near the critical point will lead to instability of the whole solution lof, lob or aof II: 

toto. 
Let us consider, to be specific, the behaviour of the perturbations of the solution lo/. 

Let all characteristic velocities c'(P = 2,3,...,n) have the same sign, e.g. positive, and 

a_>o. Then the area of negative perturbations of the solutions lof between the integral 

curve sol and the discontinuity on the left will increase as expa_t, while the perturbations 

connected with the characteristics ?,will move away along the solution lof to the end of 

2 = L,, generating the perturbations c*. However, only the negative perturbations c* can pass 

through the critical point. The positive perturbations of magnitude c, which could .compensate 

for the growth of the negative perturbations, will remain to the right of the point r =I,, 

Thus the area gain g can lead, at z<O, to even faster growth of the perturbation of lo/. i.e. 

to instability. Under these conditions the solution lob is also unstable. 

If all characteristic velocities c'(P= 2,3,...,n) are negative and a+>0 , then the 

solutions lof and aof will also be unstable for the same reasons. 

The instability of the solution /of will develop under the same conditions, and when the 

critical point of the saddle or deformed saddle-type, coincides with the right-hand end of 

the segment of the x-axis, i.e. for the solution lo when c'>O,a_>O. 
Thus the presence of the critical point in the stationary solution can lead to instabil- 

ity whether the characteristic curves diverge from or converge to the critical point, when 

the coefficient a in (1.2) is positive. Sect.3 lists the solutions for which the intrinsic 

specific instability is connected with the presence of the critical point. 
The results can be extended to solutions of the parabolic degenerate systems of equations, 

provided that a characteristic velocity exists, which vanishes. 
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